Capital-Budgeting Techniques

Prof-Parashar Dave
 Department-commerc

e

Capital Budgeting Concepts

Capital Budgeting involves evaluation of (and decision about) projects. Which projects should be accepted? Here, our goal is to accept a project which maximizes the shareholder wealth. Benefits are worth more than the cost.
The Capital Budgeting is based on forecasting.
Estimate future expected cash flows.
Evaluate project based on the evaluation method.
Classification of Projects
Mutually Exclusive - accept ONE project only Independent - accept ALL profitable projects.

Capital Budgeting Concepts

Cash Flows

Initial Cash Outlay - amount of capital spent to get

 project going.
Capital Budgeting Concepts

Cash Flows

Initial Cash Outlay - amount of capital spent to get

 project going.If spend $\$ 10$ million to build new plant then the Initial Outlay (IO) = \$10 million

$$
\mathrm{CF}_{0}=\text { Cash Flow time } 0=-10 \text { million }
$$

Capital Budgeting Concepts

Cash Flows

* Initial Cash Outlay - amount of capital spent to get project going.
If spend $\$ 10$ million to build new plant then the Initial Outlay (IO) = $\$ 10$ million

$$
C F_{0}=\text { Cash Flow time } 0=-10 \text { million }
$$

Annual Cash Inflows--after-tax CF
Cash inflows from the project

$$
C F_{\mathrm{n}}=\text { Sales }- \text { Costs }
$$

We will determine these in Chapter 10

Capital Budgeting Methods

Payback Period
Number of years needed to recover your initial outlay.

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

PR O J EC T
Time \quad A \quad B
0 $(10,000)$. $(10,000)$. 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

	P R O J E C T
Time	A
0 $(10,000$.$)$ 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000	

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

PR O JE C T			
Time	A		
0 $(10,000)$. 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000			

Cumulative CF -6,500

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Time	e A	$\begin{aligned} & \mathrm{P} R \mathrm{C} \\ & \mathrm{~B} \end{aligned}$
0	(10,00	.) (10,0
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Time	e A	$\begin{aligned} & \text { PR C } \\ & B \end{aligned}$
0	(10,00	.) (10,0
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

PR O J E C T			
0 $(10,000)$. 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000			

Payback 2.86 years

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

P R O J E C T
Time \quad A \quad B
0 $(10,000$.$)$ 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Time A B			
0	(10,00	.) (10,0	(10,000.)
1	3,500	500	
2	3,500	500	
3	3,500	4,600	
4	3,500	10,000	

Cumulative CF -9,500

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Time A B			
0	(10,000	.) (10	(10,000.)
1	3,500	500	
2	3,500	500	
3	3,500	4,600	
4	3,500	10,000	

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

			O J E C
$\begin{aligned} & \text { Time A B } \\ & \hline 0(10,000 .) \\ & \hline 10,000 .) \end{aligned}$			
1	3,500	500	
2	3,500	500	
3	3,500	4,600	
4	3,500	10,000	

$(10,000)$
Cumulative CF $-9,500 \quad-9,000 \quad-4,400$

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Time \quad A R O J E C T
0 $(10,000$.$)$ 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

PR O J E C T			
Time \quad A			
0 $(10,000)$. 1 3,500 500 2 3,500 500 3 3,500 4,600 4 3,500 10,000			

Capital Budgeting Methods

Payback Period

Number of years needed to recover your initial outlay.

Evaluation:

Company sets maximum acceptable payback. If Max PB = 3 years, accept project A and reject project C
$(10,000)$
Cumulative CF -9,500 -9,000

-Payback Method

The payback method is not a good method as it does not consider the time value of money.

Which project should you choose?

$$
\begin{array}{rccc}
\text { CF0 } & \text { CF1 } & \text { CF2 } & \text { CF3 } \\
A-100,000 & 90,000 & 9,000 & 1,000 \\
B-100,000 & 1,000 & 9,000 & 90,000
\end{array}
$$

Payback Method

The Discounted payback method can correct this shortcoming of the payback method.
To find the discounted pay back
(1) Find the PV of each cash flow on the time line.
(2) Find the payback using the discounted CF and NOT the CF.

Example In Table 9-2

-Payback Method

Also, the payback method is not a good method as it does not consider the cash flows beyond the payback period.

Payback Method

Also, the payback method is not a good method as it does not consider the cash flows beyond the payback period.

Which project should you choose?

	CFO	CF	CF		Cf	CF
A	-100000	90000	10000	0	0	
B	-100000	90000	9000	80000	1000000	

Payback Method

Also, the payback method is not a good method as it does not consider the cash flows beyond the payback period.

Which project should you choose?

	CFO	CF1	CF2	Cf3	CF4
A	$-100,000$	90,000	10,000	0	0
B	$-100,000$	90,000	9,000	80,000	100,0000

These two shortcomings often result in an incorrect decisions.

Capital Budgeting Methods

Methods that consider time value of money and all cash flows

Net Present Value:
Present Value of all costs and benefits of a project.

Capital Budgeting Methods

Present Value of all costs and benefits of a project.
Concept is similar to Intrinsic Value of a security but subtracts cost of the project.

> NPV = PV of Inflows - Initial Outlay

Capital Budgeting Methods

Net Present Value

Present Value of all costs and benefits of a project.
 Concept is similar to Intrinsic Value of a security but subtracts of cost of project.

NPV = PV of Inflows - Initial Outlay
$\mathrm{NPV}=\frac{\mathrm{CF}_{1}}{(1+\mathrm{k})}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{k})^{2}}+\frac{\mathrm{CF}_{3}}{(1+\mathrm{k})^{3}}+\cdots+\frac{\mathrm{CF}_{n}}{(1+\mathrm{k})^{n}}-$
IO

Capital Budgeting Methods

PROJECT
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

PROJECT
Time A B
$\left|\begin{array}{lll|}0 & (10,000 .) & (10,000 .) \\ 1 & 3,500 & 500 \\ 2 & 3,500 & 500 \\ 3 & 3,500 & 4,600 \\ 4 & 3,500 & 10,000\end{array}\right|$

Capital Budgeting Methods

Net Present Value

P R O J E C T			
Time \quad A			
0 $(10,000)$. 1 3,500 500 2 3,500 500 3 30,500 4,600 4 3,500 10,000			

Capital Budgeting Methods

PROJECT
Time A B
$\left|\begin{array}{lll}0 & (10,000 .) & (10,000 .) \\ 1 & 3,500 & 500 \\ 2 & 3,500 & 500 \\ 3 & 3,500 & 4,600 \\ 4 & 3,500 & 10,000\end{array}\right|$

Capital Budgeting Methods

PROJECT
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

PROJECT
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

413
3,456
6,830
\$11,154

Capital Budgeting Methods

Net Present Value

PROJECT
Time A B

0	$(10,000)$.	
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

455
413
3,456
PV Benefits > PV Costs \$11,154 > \$ 10,000

6,830
\$11,154

Capital Budgeting Methods

PROJECT
Time A B

0	$(10,000)$.	
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

455
413
3,456
6,830
\$11,154
\$1,154 = NPV

Capital Budgeting Methods

Net Present Value

PROJECT
Time A B

0	$(10,000$.$)$
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

Net Present Value

PROJECT
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

$\mathrm{NPV}=\frac{3.500}{(1+.1)}+\frac{3.500}{(1+.1)^{2}}+\frac{3,500}{(1+.1)^{3}}+\frac{3.500}{(1+.1)^{4}}-10,000$

Capital Budgeting Methods

Net Present Value

PROJECT
Time A B

0	$(10,000$.$)$
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

$\mathrm{NPV}=\frac{3,500}{(1+.1)}+\frac{3,500}{(1+.1)^{2}}+\frac{3,500}{(1+.1)^{3}}+\frac{3,500}{(1+.1)^{4}}-10,000$

PV of 3,500 Annuity for 4 years at 10\%

Capital Budgeting Methods

Net Present Value

PROJECT
Time A B

0	$(10,000$.$)$
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

$\mathrm{NPV}=\frac{3,500}{(1+.1)}+\frac{3,500}{(1+.1)^{2}}+\frac{3,500}{(1+.1)^{3}}+\frac{3,500}{(1+.1)^{4}}-10,000$
$=3,500 \times$ PVIFA $_{4, .10}-10,000$
$=11,095-10,000=\$ 1,095$

Capital Budgeting Methods

NPV Decision Rules
If projects are independent then accept all projects with NPV ≥ 0.

ACCEPT A \& B

Capital Budgeting Methods

If projects are independent then accept all projects with NPV ≥ 0. If projects are mutually exclusive, accept projects with higher NPV.

ACCEPT A \& B
ACCEPT B only

Net Present Value Profile

Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(0 \%) & =\frac{3,500}{(1+0)}+\frac{3,500}{(1+0)^{2}}+\frac{3,500}{(1+0)^{3}}+\frac{3,500}{(1+0)^{4}}-10,000 \\
& =\$ 4,000
\end{aligned}
$$

Net Present Value Profile

Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(5 \%) & =\frac{3,500}{(1+.05)^{2}}+\frac{3,500}{(1+.05)^{2}}+\frac{3,500}{(1+.05)^{\frac{1}{5}}} \frac{3,500}{(1+.05)^{4}}-10,000 \\
& =\$ 2,411
\end{aligned}
$$

Net Present Value Profile

* Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(10 \%) & =\frac{3.500}{(1+.10)^{2}}+\frac{3.500}{(1+.10)^{2}}+\frac{3.500}{(1+.10)^{\frac{1}{3}}}+\frac{3.500}{(1+.10)^{4}}-10,000 \\
& =\$ 1,095
\end{aligned}
$$

Net Present Value Profile

* Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(15 \%) & =\frac{3.500}{(1+.15)^{2}}+\frac{3.500}{(1+.15)^{2}}+\frac{3.500}{(1+.15)^{3}}+\frac{3.500}{(1+.15)^{4}}-10,000 \\
& =-\$ 7.58
\end{aligned}
$$

Net Present Value Profile

* Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\mathrm{NPV}(20 \%) & =\frac{3,500}{(1+.20)^{2}}+\frac{3,500}{(1+.20)^{2}}+\frac{3,500}{(1+.20)^{3}}+\frac{3,500}{(1+.20)^{4}}-10,000 \\
& =-\$ 939
\end{aligned}
$$

Net Present Value Profile

Graphs the Net Present Value of the project with different required rates

Connect the Points

Net Present Value Profile

$$
\begin{aligned}
\operatorname{NPV}(0 \%) & =\frac{500}{(1+0)}+\frac{500}{(1+0)^{2}}+\frac{4,600}{(1+0)^{3}}+\frac{10,000}{(1+0)^{4}}-10,000 \\
& =\$ 5,600
\end{aligned}
$$

Net Present Value Profile

$$
\begin{aligned}
\mathrm{NPV}(5 \%) & =\frac{500}{(1+.05)}+\frac{500}{(1+.05)^{2}}+\frac{4.600}{(1+.05)^{3}}+\frac{10,000}{(1+.05)^{4}}-10,000 \\
& =\$ 3,130
\end{aligned}
$$

Net Present Value Profile

- Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(10 \%) & =\frac{500}{(1+.10)}+\frac{500}{(1+.10)^{2}}+\frac{4.600}{(1+.10)^{3}}+\frac{10,000}{(1+.10)^{4}}-10,000 \\
& =\$ 1.154
\end{aligned}
$$

Net Present Value Profile

* Graphs the Net Present Value of the project with different required rates

$$
\begin{aligned}
\operatorname{NPV}(15 \%) & =\frac{500}{(1+.15)}+\frac{500}{(1+.15)^{2}}+\frac{4.600}{(1+.15)^{3}}+\frac{10,000}{(1+.15)^{4}}-10,000 \\
& =-\$ 445
\end{aligned}
$$

Net Present Value Profile

Graphs the Net Present Value of the project with different required rates

Connect the Points

Net Present Value Profile

Graphs the Net Present Value of the project with different required rates

Net Present Value Profile

Compare NPV of the two projects for different required rates

Net Present Value Profile

Compare NPV of the two projects for different required rates

Net Present Value Profile

Compare NPV of the two projects for different required rates

Capital Budgeting Methods

Internal Rate of Return

Measures the rate of return that will make the PV of future CF equal to the initial outlay.

Definition:
The IRR is that discount rate at which $N P V=0$

IRR is like the YTM. It is the same cocept but the term YTM is used only for bonds.

Capital Budgeting Methods

Internal Rate of Return

Measures the rate of return that will make the PV of future CF equal to the initial outlay.

The IRR is the discount rate at which NPV $=0$

$$
\mathrm{NPV}=\$ 0
$$

Capital Budgeting Methods

Internal Rate of Return

\& Measures the rate of return that will make the PV of future CF equal to the initial outlay.

Or, the IRR is the discount rate at which NPV $=0$

$$
\mathrm{NPV}=\$ 0
$$

Capital Budgeting Methods

Internal Rate of Return
Determine the mathematical solution for IRR

Capital Budgeting Methods

Internal Rate of Return
Determine the mathematical solution for IRR
$0=\mathrm{NPV}=\frac{\mathrm{CF}_{1}^{1}}{(1+\operatorname{RRR})^{1}}+\frac{\mathrm{CF}_{2}}{(1+\operatorname{IRR})^{2}}+\cdots+\frac{\mathrm{CF}_{n}}{(1+\operatorname{IRR})^{n}}-$

Capital Budgeting Methods

Internal Rate of Return

Determine the mathematical solution for IRR
$0=\mathrm{NPV}=\frac{\mathrm{CF}_{1}^{1}}{(1+\operatorname{RR})^{2}}+\frac{\mathrm{CF}_{2}}{(1+\operatorname{IRR})^{2}}+\cdots+\frac{\mathrm{CF}_{n}}{(1+\operatorname{IRR})^{n}}-$

$$
\begin{aligned}
& \mathrm{IO}=\frac{\mathrm{CF}_{1}}{(1+I R R)}+\frac{\mathrm{CF}_{2}}{(1+\operatorname{IRR})^{2}} \quad \frac{\mathrm{CF}_{n}}{(1+\operatorname{IRR})^{n}}, ~
\end{aligned}
$$

Outflow = PV of Inflows

Capital Budgeting Methods

Internal Rate of Return

Determine the mathematical solution for IRR
$0=\mathrm{NPV}=\frac{\mathrm{CF}_{1}}{(1+\mathrm{IR} R)^{2}}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{IR} R)^{2}}+\cdots+\mathrm{CF}_{(1+\mathrm{IR} R)^{n}}-$
IO

$$
\begin{aligned}
& \mathrm{IO}=\frac{\mathrm{CF}_{1}}{(1+\mathrm{IRR})^{+}+\frac{\mathrm{CF}_{2}}{(1+I R R)^{2}}} \begin{array}{l}
\frac{C F}{n}_{(1+\mathrm{IR} R)^{n}}^{+\cdots+} \\
\text { flow }=\mathrm{PV} \text { of Inflows }
\end{array} \text { Solve for Discount Rates }
\end{aligned}
$$

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$$
10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4,600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}
$$

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$$
10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4,600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}
$$

TRY 14\%
$10,000 \stackrel{?}{=} \frac{500}{(1+.14)^{2}}+\frac{500}{(1+.14)^{2}}+\frac{4.600}{(1+.14)^{3}}+\frac{10,000}{(1+.14)^{4}}$

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4,600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}$
TRY 14\%
$10,000 \stackrel{?}{=} \frac{500}{(1+.14)}+\frac{500}{(1+.14)^{2}}+\frac{4.600}{(1+.14)^{3}}+\frac{10,000}{(1+.14)^{4}}$
$10,000 \stackrel{?}{=} 9,849$
PV of Inflows too low, try lower rate

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$$
10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4,600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}
$$

TRY 13\%

$$
10,000 \stackrel{?}{=} \frac{500}{(1+.13)}+\frac{500}{(1+.13)^{2}}+\frac{4.600}{(1+.13)^{3}}+\frac{10,000}{(1+.13)^{4}}
$$

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4.600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}$
TRY 13\%
$10,000 \stackrel{?}{=} \frac{500}{(1+.13)}+\frac{500}{(1+.13)^{2}}+\frac{4,600}{(1+.13)^{3}}+\frac{10,000}{(1+.13)^{4}}$
$10,000 \stackrel{?}{=} 10,155$

Capital Budgeting Methods

Internal Rate of Return For Project B

Cannot solve for IRR directly, must use Trial \& Error

$10,000=\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{500}{(1+\operatorname{IRR})^{2}}+\frac{4,600}{(1+\operatorname{IRR})^{3}}+\frac{10,000}{(1+\operatorname{IRR})^{4}}$
TRY 13\%
$10,000 \stackrel{?}{=} \frac{500}{(1+.13)}+\frac{500}{(1+.13)^{2}}+\frac{4,600}{(1+.13)^{3}}+\frac{10,000}{(1+.13)^{4}}$
$10,000 \stackrel{?}{=} 10,155 \quad 13 \%<I R R<14 \%$

Capital Budgeting Methods

Decision Rule for Internal Rate of Return

Independent Projects
Accept Projects with IRR \geq required rate

Mutually Exclusive Projects
Accept project with highest
$\mathrm{IRR} \geq$ required rate

Capital Budgeting Methods

$$
\mathrm{PI}=\frac{\mathrm{PV} \text { of Inflows }}{\text { Initial Outlay }}
$$

Capital Budgeting Methods

Profitability Index

Very Similar to Net Present Value

$$
\mathrm{PI}=\frac{\mathrm{PV} \text { of Inflows }}{\text { Initial Outlay }}
$$

Instead of Subtracting the Initial Outlay from the PV of Inflows, the Profitability Index is the ratio of Initial Outlay to the PV of Inflows.

Capital Budgeting Methods

Profitability Index

Very Similar to Net Present Value

$\mathrm{PI}=\frac{\mathrm{PV} \text { of Inflows }}{\text { Initial Outlay }}$

Instead of Subtracting the Initial Outlay from the PV of Inflows, the Profitability Index is the ratio of Initial Outlay to the PV of Inflows.

$$
\mathrm{PI}=\frac{\frac{\mathrm{CF}}{1}_{(1+\mathrm{k})}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{k})^{2}}+\frac{\mathrm{CF}_{3}}{(1+\mathrm{k})^{3}} \frac{\mathrm{CF}_{n}}{(1+\mathrm{k})^{n}}}{+\cdots+}
$$

Capital Budgeting Methods

Profitability Index for Project B

$$
\mathrm{PI}=\frac{\frac{500}{(1+.1)^{2}}+\frac{500}{(1+.1)^{2}}+\frac{4.600}{(1+.1)^{3}}+\frac{10,000}{(1+.1)^{4}}}{10,000}
$$

Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Capital Budgeting Methods

Profitability Index for Project B

$$
\begin{aligned}
& \mathrm{PI}=\frac{\frac{500}{(1+.1)^{2}}+\frac{500}{(1+.1)^{2}}+\frac{4.600}{(1+.1)^{3}}+\frac{10,000}{(1+.1)^{4}}}{10,000} \\
& \mathrm{PI}=\frac{11,154}{10,000}=1.1154
\end{aligned}
$$

Capital Budgeting Methods

Profitability Index for Project B $\mathrm{PI}=\frac{\frac{500}{(1+.1)^{2}}+\frac{500}{(1+.1)^{2}}+\frac{4.600}{(1+.1)^{3}}+\frac{10,000}{(1+.1)^{4}}}{10,000}$
$\mathrm{PI}=\frac{11,154}{10,000}=1.1154$
PROJECT
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Profitability Index for Project A

$$
\mathrm{PI}=\frac{3,500 \times \text { PVIFA }_{4, .10}}{10,000}
$$

Capital Budgeting Methods

PROJECT

$\mathrm{PI}=\frac{11,154}{10,000}=1.1154$
Time A B

0	$(10,000)$.	$(10,000)$.
1	3,500	500
2	3,500	500
3	3,500	4,600
4	3,500	10,000

Profitability Index for Project A

$$
\begin{aligned}
& \mathrm{PI}=\frac{3,500\left(\frac{1}{.10}-\frac{1}{.10(1+.10)^{4}}\right)}{10,000} \\
& \mathrm{PI}=\frac{11,095}{10,000}=1.1095
\end{aligned}
$$

Capital Budgeting Methods

Profitability Index Decision Rules

Independent Projects Accept Project if $\mathrm{PI} \geq 1$
Mutually Exclusive Projects
Accept Highest PI ≥ 1 Project

Comparison of Methods

Project A Project B Choose
Payback < 3 years < 4 years A
NPV \$1,095 \$1,154 B
IRR 14.96\% 13.50\% A
PI 1.1095 1.1154B

Comparison of Methods

Time Value of Money
Payback - Does not adjust for timing differences
(ignore Discounted Payback)
NPV, IRR and PI take into account the time value of money

Comparison of Methods

Time Value of Money

* Payback - Does not adjust for timing differences
* NPV, IRR and PI take into account the time value of money
Relevant Cash Flows?
NPV, IRR and PI use all Cash Flows
Payback method ignores Cash Flows that occur after the Payback Period.

Comparison of Methods

Time Value of Money

\& Payback - Does not adjust for timing differences
\& NPV, IRR and PI take into account the time value of money
Relevant Cash Flows?
NPV, IRR and PI use all Cash Flows
Payback method ignores Cash Flows that occur after the Payback Period.

Comparison of Methods

Time Value of Money

\& Payback - Does not adjust for timing differences \& NPV, IRR and PI take into account the time value of money
Relevant Cash Flows?
NPV, IRR and PI use all Cash Flows
Payback method ignores Cash Flows that occur after the Payback Period.

Both Projects have Identical Payback

Comparison of Methods

NPV \& PI indicated accept Project B while IRR indicated that Project A should be accepted. Why?
Sometimes there is a conflict between the decisions based on NPV and IRR methods.
The conflict arises if there is difference in the timing of CFs or sizes of the projects (or both).
The cause of the conflict is the underlying reinvestment rate assumption.
Reinvestment Rate Assumptions
NPV assumes cash flows are reinvested at the required rate, k .

* IRR assumes cash flows are reinvested at IRR.

Reinvestment Rate of k more realistic as most projects earn approximately k (due to competition)
NPV is the Better Method for project evaluation

Because of its unreasonable reinvestment rate assumption, IRR method can result in bad decisions.

Another problem with IRR is that if the sign of the cash flow changes more than once, there is a possibility of multiple IRR. See p 340.

The problem of unreasonable assumption can be addressed by using Modified IRR

To find MIRR

1. Find the FV of all intermediate CFs using the cost of capital (the hurdle rate) as the interest rate.
2.Add all FV.
2. Find that discount rate which makes the PV of the FV equal to the PV of outflows.

Drop MIRR computations.

Thank you

